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Abstract 

Acute fish toxicity is an ecotoxicological endpoint that provides important information about a chemical’s potential to elicit (an) ad
verse effect(s) on fish. These effects are typically studied using in vivo tests, but for animal welfare reasons as well as the quest for in
creased species relevance, biological coverage, mechanistic understanding of effects, and throughput, there have been significant 
efforts in recent years to reduce or replace the use of animals in (eco)toxicological hazard assessment by developing defined 
approaches (DA) or integrated approaches to testing and assessment. To this end, a novel score-based DA has been developed as a 
proof-of-concept, which integrates three in silico predictions from freely available (quantitative) structure activity relationship mod
els: the VEGA Fish (KNN-Read-Across) and Fathead Minnow (KNN-IRFMN) models and the United States Environmental Protection 
Agency ECOSAR Fish 96-h LC50 model, along with in vitro RTgill-W1 data. The DA provides a categorical output aligned with the 
United Nations Globally Harmonized System of Classification and Labelling framework (Acute Category 1, Acute Category 2, Acute 
Category 3, or Not Classified) with an overall accuracy of 80%, offering a reliable alternative to traditional in vivo testing methods for 
acute fish toxicity.

Keywords: aquatic acute toxicity, defined approaches, classification and labelling, Globally Harmonized System of Classification 
and Labelling 

Introduction
The Animal-Free Safety Assessment 
Collaboration
Humane World for Animals (previously known as Humane 
Society International) leads a multi-stakeholder initiative known 
as the Animal-Free Safety Assessment (AFSA) Collaboration, 
which was developed to accelerate the global adoption of modern 
chemical safety assessment using non-animal approaches 
(Animal-Free Safety Assessment Collaboration, 2018). The AFSA 
Collaboration focuses on several key areas, including uniting 
leading industry and not-for-profit organizations with a shared 
goal of replacing animal testing with scientifically robust and 
protective non-animal approaches.

Hazard characterization and classification for 
acute aquatic toxicity
Acute aquatic toxicity is an ecotoxicological endpoint that pro

vides important information about a chemical’s potential to elicit 

(an) adverse effect(s) on aquatic organisms over short-term expo

sure(s). Within regulatory ecotoxicology, three trophic levels are 

typically considered as proxies of the ecosystem: fish (represent

ing vertebrates/apical consumers), daphnia (representing inver

tebrates/primary consumers), and algae (representing plants/ 

primary producers). Acute aquatic toxicity is typically studied us

ing one or more Organisation for Economic Co-operation and 

Development (OECD) test guideline assays such as the Fish Acute 

Toxicity Test (OECD 203), the Fish Embryo Acute Toxicity Test 
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(FET; OECD 236), the Fish Cell Line Acute Toxicity—The RTgill- 
W1 cell line assay (OECD 249); Daphnia sp., Acute Immobilisation 
Test (OECD 202); Freshwater Alga and Cyanobacteria, Growth 
Inhibition Test (OECD 201); and the Freshwater aquatic plants, 
Lemna sp. Growth Inhibition Test (OECD 221; Organisation for 
Economic Co-Operation and Development, 2004, 2006, 2011, 
2013, 2019, 2021b). The concentration that causes 50% lethal, im
mobilization, or growth inhibition effects, depending on the test 
guideline followed (i.e., the lethal or effect [L(E)C]50) values 
obtained from these assays) is used within several regulatory 
frameworks. These include performing environmental risk as
sessment of chemicals under the European Union (EU) regulation 
1272/2008 on the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH; European Union, 2006) or of 
plant protection products under EU regulation 1107/2009 con
cerning the placing of plant protection products on the market 
(European Union, 2009). They are also used within classification 
and labeling frameworks such as the Globally Harmonized 
System of Classification and Labelling of Chemicals (GHS) or the 
European Union Classification and Labelling and Packaging (EU 
CLP) regulation to assign categories of Acute 1, Acute 2, Acute 3, 
and Not Classified, which indicate the inherent degree of hazard 
of a given substance (Table 1; European Union, 2008; United 
Nations Globally Harmonized System, 2023).

Use of animal models for acute fish toxicity
In 2019, EU regulation 2019/1010 mandated that all Member 
States collect and publicly disclose annual statistics on animal 
use, which can be used to monitor the impact of 3Rs (Replace, 
Reduce, Refine animal use) initiatives (European Union, 2019). The 
3Rs principle aims to avoid unnecessary animal testing and pro
mote alternative approaches, whenever possible (Russell & Burch, 
1960). In recent years, there has been a concerted effort to reduce 
or eliminate the use of vertebrate fish and increase the adoption 
of non-animal New Approach Methodologies (NAMs) for regula
tory environmental hazard and risk assessments, driven by con
cerns for animal welfare and the desire for greater species 
relevance (through NAMs designed to evaluate a common mecha
nism), biological coverage, and improved throughput.

Depending on their life stage (e.g., excluding larval stages), 
fish are classified as animals under the EU definition as stated in 
Directive 2010/63/EU and its amendments (European Union, 
2010). Despite reports of a decline in short-term fish toxicity 
studies (European Chemicals Agency, 2023), the ALURES data
base (European Commission, 2022), which allows filtering by use, 
shows that approximately 30,000 fish were specifically used for 
regulatory testing in 2022.

Combining information sources to increase 
relevance, protection, and predictivity power
The OECD has published several frameworks to assist regulatory 
decision-making on various specific topics (Organisation for 
Economic Co-operation and Development, 2017a, 2017b, 2019, 

2023, 2024). These approaches include integrated approaches to 
testing and assessment (IATA) and defined approaches (DA). The 
former, IATA, requires expert judgment, whereas DAs use a de
fined set of information sources in a fixed data interpretation 
procedure (e.g., decision trees or complex algorithms) to address 
a specific regulatory need. The information sources used in DAs 
may incorporate a range of complementary methods, including 
in silico approaches ([quantitative] structure activity relationship 
models; [(Q)SARs]), mechanistic models (physiologically based 
pharmacokinetic, toxicokinetics/toxicodynamics), as well as in 
chemico and in vitro methods, collectively known as NAMs. 
Several DAs, such as those for skin sensitization and eye irrita
tion, have been published as OECD guidelines (Organisation for 
Economic Co-Operation and Development, 2023, 2024), with at 
least one DA incorporating (Q)SAR predictions. There is growing 
interest in expanding their chemical and toxicological applicabil
ity and their use in various contexts (Al�ep�ee et al., 2019, 2023; 
Al�ep�ee & Adriaens, 2024; Organisation for Economic Co- 
Operation and Development, 2023, 2024; Strickland et al., 2022).

In silico (Q)SAR models have been available to predict acute 
aquatic toxicity for many years (Cronin, 2017). The (Q)SARs are 
relevant within certain domains of applicability and take into ac
count many properties, including chemical class and structure, 
mode/mechanism of action (MoA), physical and chemical proper
ties, and model organisms, leading to a wide choice of available 
(Q)SAR models and versions. (Quantitative) structure activity re
lationship models are permitted for use in a regulatory context 
providing they fulfill the (Q)SAR validation principles 
(Organisation for Economic Co-operation and Development, 
2014), and they are often used in weight of evidence approaches 
alongside other information sources such as in vitro assays 
(Voigt & Jaeger, 2023). Regulatory agencies such as the European 
Chemicals Agency (ECHA) have also published guidance on the 
use and reporting of (Q)SARs (European Chemicals Agency, 
2008, 2016).

Consequently, this project aimed to prioritize the use of open- 
source and freely available (Q)SAR models and the in vitro RTgill- 
W1 assay to develop a DA using a dataset compiled of publicly 
available data. The main objective was to create a DA that is ac
cessible to a broad audience of experts and capable of predicting 
acute fish toxicity classifications suitable for EU CLP and/or GHS 
classification contexts. The FET was not considered as a line of 
evidence/potential information source in the DA because this as
say is not considered to be a non-animal study by all stakehold
ers/organizations.

Materials and methods
Compilation of a dataset used to develop the 
defined approach (AFSA dataset)
Several data sources were integrated using the Konstanz 
Information Miner (KNIME Analytics Platform Ver. 5.2.4; Berthold 
et al., 2009) to create a comprehensive dataset (herein referred to 
as the “AFSA dataset”) for use to develop the DA, including sev
eral literature sources and the ECOTOX database as extracted 
from OECD QSAR Toolbox (Lillicrap et al., 2020; Natsch et al., 
2018; Organisation for Economic Co-Operation and Development, 
2021a; Tanneberger et al., 2013). Each data source was standard
ized and curated by unifying chemical names, renaming column 
headers, filtering out RTgill-W1 studies reporting nominal values 
(retaining measured values only), making units consistent, re
moving non-test guideline species and excluding entries with 
non-test guideline study durations (retaining 96 hr studies for 

Table 1. An overview of the median lethal or effect concentration 
values and their corresponding hazard classification, as defined 
by European Union Classification and Labelling and Packaging 
(EU CLP) or Globally Harmonized System (GHS) of Classification 
and Labelling of Chemicals. NC ¼ not classified.

Concentration (mg/L) ≤ 1 >1 ≤ 10 >10 ≤ 100 >100

Classification Acute 1 Acute 2 Acute 3 NC
Applicable under EU CLP? Yes No No Yes
Applicable under GHS? Yes Yes Yes Yes
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acute fish toxicity; 24 hr studies for RTgill-W1 studies), removing 
nonstandard numerical values (e.g., those using qualifies such as 
>, <), and, finally, by removing superfluous columns. The data 
sources were then aggregated by Chemical Abstracts Service 
Registry Number (CAS RN). During the integration process, it was 
apparent that several data sources contained duplicate results 
from the same studies. Therefore, to reduce “double-counting” of 
the same experimental value (because manual curation was not 
possible due to size of dataset), a ranking system was applied to 
the data sources. If ECOTOX data were available for a specific 
substance, this was preferentially used, due to its extensive cov
erage from various sources. The remaining publications were pri
oritized in the following order: Lillicrap et al. 2020, Tanneberger 
et al., 2013, and, finally, Natsch et al. (2018), to obtain additional 
data for specific substances not previously identified. After ap
plying the ranking, if more than one study result was available 
for a unique substance in the data source, the geometric mean 
value per species, as well as across all species, was calculated 
(Figure 1). The ranking system was not intended to reflect the 
quality of individual data sources but was used to ensure that 
the experimental data in the AFSA dataset were as reliable as 
possible, to create a quality dataset for use in the development of 
the DA. The final step was to filter the dataset to keep only those 
chemicals that also had a data point from the RTgill-W1 assay. 
Extensive data curation was outside the scope of the project.

Simplified Molecular-Input Line-Entry System (SMILES) are a 
compact way of representing a chemical substance’s structure 
(International Union of Pure and Applied Chemistry, 1997b), and 
SMILES strings are often used as input into (Q)SARs. For substan
ces where SMILES was not reported in the data source, 
ProtoQSAR’s in-house Python script was used to automatically 
retrieve SMILES from PubChem using the CAS RN (Kim et al., 
2023; National Institutes of Health, 2024b; Python Software 
Foundation, 2024). An additional Python script, developed by 
ProtoQSAR, using functions from the rdkit package (RDKit: Open- 
source cheminformatics, 2021), was used to curate the SMILES; 

this includes removing incorrect molecules, inorganic and organ
ometallic molecules from the dataset, sanitizing the SMILES 
string molecular structures (by harmonizing atom numbering, 
checking valencies, setting aromaticity, conjugation and hybridi
zation, etc.), eliminating the counterions of organic salts, and 
identifying and combining duplicate molecules. A manual cura
tion step was performed to remove mixtures.

The final AFSA dataset consisted of 405 unique substances 
with fish LC50 data, and it was used to evaluate, and then select, 
the (Q)SAR models to be used in the DA. A subset of 66 chemicals 
also had corresponding RTgill-W1 data, which was used to evalu
ate the DA. The final composition of the dataset is illustrated in  
Table 2. The AFSA dataset is provided as online supplemen
tary material.

Chemical space analysis
To evaluate the coverage of the AFSA dataset, a chemical space 
analysis was conducted. Several public access databases were 
collected, representing diverse molecular chemical space. The 
first was the ZINC 15 database (Sterling & Irwin, 2015), a collec
tion of commercially available “drug-like” compounds, obtained 
from rdkit as mol format, a format used to encode chemical 
structures as text-based connection tables (International Union 
of Pure and Applied Chemistry, 1997a), and SMILES notation. 
Next, a large set of fragrance ingredients was acquired from the 
International Fragrance Association Transparency List as CAS 
RN (International Fragrance Association, 2024). The SMILES data 
were retrieved from the PubChem database using the CAS RN, 
and from the CACTVS server if the SMILES were not retrievable 
by PubChem, using automatic Python scripts (National Institutes 
of Health, 2024a, 2024b). The SMILES of substances correspond
ing to industrial products were retrieved from the ECHA REACH 
database, which contains registered chemical substances pro
vided by companies in accordance with the requirements of the 
REACH Regulation (European Union, 2006), and from the Toxic 
Substances Control Act (TSCA) database (United States 
Environmental Protection Agency, 2013), which contains all 
existing chemical substances manufactured, processed, or 
imported in the United States, by means of QSAR Toolbox 
(Organisation for Economic Co-Operation and Development, 
2021a). A database of 437,859 natural products was also com
piled. The data to construct this database was extracted from dif
ferent online sources containing information about natural 
products and nutraceuticals: 406,747 molecules from the 
COlleCtion of Open NatUral producTs (COCONUT) database 
(Sorokina et al., 2021), 107 nutraceuticals from Drugbank 
(Wishart et al., 2018), 20 nutraceuticals from Drugs.com (Drugs. 
com, 2024), 59 nutraceuticals from FooDB (FooDB, 2024), and 
30,926 natural products from the Natural Product Activity and 
Species Source (NPASS) database (Zeng et al., 2018). A curating 

Figure 1. Workflow depicting ranking of data sources used to derive fish 
median lethal concentration (LC50) values in the Animal-Free Safety 
Assessment (AFSA) dataset. If fish LC50 data was present in ECOTOX, 
this was used preferentially. The remaining publications were then 
searched for fish LC50 data in the order of Lillicrap et al. (2020), 
Tanneberger et al. (2013), and, finally, Natsch et al. (2018), to obtain 
additional data for specific substances not previously identified. The 
ranking is not a reflection of the perceived quality of data contained in 
the individual data sources.

Table 2. Composition of the Animal-Free Safety Assessment 
(AFSA) dataset used to develop the defined approach for acute 
fish toxicity.

Taxa Species Data sources n

Fish Cyprinus carpio, Danio 
rerio,  
Lepomis macrochirus, 
Oryzias latipes, 
Oncorhynchus mykiss, 
Pimephales promelas

ECOTOX, Natsch et al. 
(2018), Lillicrap et al. 
(2020), Tanneberger 
et al. (2013)

405

RTgill-W1 O. mykiss Natsch et al. (2018), 
Tanneberger et al. (2013)

66
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process was performed on the initial database to remove dupli
cated molecules, salts, inorganic compounds, and mixtures, 
obtaining a resulting database of 429,460 compounds. The natu
ral products datasets were then merged and reduced to 10% of its 
original size by clustering it using the density-based Ordering 
Points To Identify the Clustering Structure (OPTICS) method, 
with the Jaccard index, based on Molecular ACCess Systems 
(MACCS) fingerprints (Ankerst et al., 1999). This reduction 
method results in an easier-to-handle dataset (�40k chemicals 
compared to the original �400k) with the same approximate rep
resentation of chemical groups.

Chemical structures from these different databases as well as 
from the AFSA dataset were encoded as Morgan fingerprints to 
represent the chemical entities and the spatial connectivity in 
each substance, for comparative analysis (Morgan, 1965). 
Chemical space was compared among them using the two most 
significant principal components derived from the principal com
ponent analysis (PCA; Greenacre et al., 2022).

The databases were also analyzed using physicochemical 
properties: boiling point (BP), octanol/water distribution ratio 
(logD), octanol/water partition coefficient (logP, often referred to 
as logKow), melting point (MP), and water solubility (WS). The 
physicochemical properties were calculated using the 
ProtoPHYSCHEM module, which is a compendium of QSAR mod
els that predict physicochemical properties integrated in web 
tool ProtoPRED (ProtoQSAR, 2025).

(Q)SAR models
Several software tools containing (Q)SAR models for the evalua
tion of acute fish toxicity were collected, with the aim of evaluat
ing them against the AFSA dataset. This evaluation aimed to 
select appropriate (Q)SAR models for use in the DA. When col
lecting possible software tools, only noncommercial, open-access 
(freely available) software was considered. Moreover, additional 
aspects were considered during the software selection: their ease 
of use, level of acceptance within the experimental field, and 
their capacity to perform batch predictions for large datasets. 
Three software tools consisting of 12 (Q)SARs were evaluated, 
VEGA, United States Environmental Protection Agency (USEPA) 
ECOSAR, and T.E.S.T. These (Q)SARs are, of course, not an ex
haustive list of those that can be used for this toxicological end
point, and there may be other (Q)SARs that are also applicable 
for use in a DA, e.g., iSafeRat (KREATiS, 2024).

VEGA
The VEGA platform provides a series of freely available (Q)SAR 
models for regulatory purposes, and the following eight models 
were used in this project: Fish Acute (LC50) Toxicity model 
(IRFMN), Fish Acute (LC50) Toxicity model (NIC), Fish Acute 
(LC50) Toxicity model (KNN-Read-Across), Fish Acute (LC50) 
Toxicity classification (SarPy-IRFMN), Fish Acute (LC50) Toxicity 
model (IRFMN-Combase), Fathead Minnow LC50 96 h (USEPA), 
Fathead Minnow LC50 model (KNN-IRFMN), and Guppy LC50 
model (KNN-IRFMN). VEGA Ver. 1.2.3 (Benfenati et al., 2013) was 
used and predictions from its eight models generated using 
SMILES and the batch prediction mode. The VEGA platform pro
vides predicted LC50 values (except for Fish Acute (LC50) Toxicity 
classification (SarPy-IRFMN), which provides classes correspond
ing to GHS categories), and an estimation of the reliability of the 
prediction. The reliability of the prediction is related to the appli
cability domain (AD) of the model as defined by the developers 
(Danieli et al., 2023). An AD index is provided with each predic
tion: if the AD index is between 1 and 0.85, the substance is 
regarded within the AD of the model and corresponds to good 

reliability. If the AD index is between 0.85 and 0.7, the substance 
could be out of the AD of the model and corresponds to moderate 
reliability. If the AD index is less than 0.7, the substance is 
regarded out of the AD of the model and corresponds to a low re
liability prediction. Only predictions with good or moderate reli
ability were considered. The predicted LC50s from the eight 
VEGA models (except the Fish Acute (LC50) Toxicity classification 
(SarPy-IRFMN) model, which directly provided predictions as 
GHS classifications; Table 1) were converted to the respective 
acute environmental GHS classifications and corresponding DA 
scores for additional analyses using KNIME.

USEPA ECOSAR
The Ecological Structure Activity Relationships (ECOSAR) 
Predictive Model, developed by the USEPA, is a freely available 
model that predicts aquatic toxicity based on the applicable/ 
assigned chemical class of the substance under assessment 
(Reuschenbach et al., 2008). Two models were used, one for 
freshwater fish, ECOSAR Fish 96-h LC50, and one for saltwater 
fish, ECOSAR Fish 96-h LC50 (SW). The ECOSAR model Ver. 2.2 
(United States Environmental Protection Agency, 2024) was used 
to generate predictions from both models using the SMILES string 
for each substance. For substances with more than one predic
tion (due to classification into multiple chemical classes, e.g., or
ganic neutral, amides, vinyl, esters), the most conservative value 
was used according to the precautionary principle. Substances 
with a Log Kow above the Max Log Kow for each ECOSAR class, as 
defined by ECOSAR, were considered as outside the AD and ex
cluded from the analysis. The predicted LC50s from each 
ECOSAR model were converted to the respective acute environ
mental GHS classifications and corresponding DA scores for ad
ditional analyses using KNIME.

T.E.S.T
The Toxicity Estimation Software Tool is a freely available tool 
from the USEPA and consists of several methodologies, which are 
grouped as two (Q)SARs, the single model and the consensus 
model. The single model method (a multilinear regression model) 
and the consensus model (an average of the predictions from all 
(Q)SAR methodologies in T.E.S.T.; single-method, hierarchical, 
group contribution, nearest neighbor and mode of action meth
ods) was used. The T.E.S.T. tool Ver. 5.1.2.0 was used to generate 
predictions from its single method model and consensus model 
using the SMILES string for each substance (Martin et al., 2023). 
When working in single model mode, and the software does not 
provide a prediction, this means that the molecule does not fall 
within the AD. When using the consensus model, which is the av
erage of the predicted toxicities from all (Q)SAR methodologies, 
the applicability domain of each method is taken into account, 
and if only one methodology provides a prediction, then the pre
diction was not used. Experimental values retrieved by T.E.S.T. 
were not considered. The predicted LC50s from T.E.S.T. models 
were converted to the respective acute environmental GHS clas
sifications and corresponding DA scores for additional analyses 
using KNIME.

Abbreviations of models
The models were abbreviated as follows: VEGA Fish Acute (LC50) 
Toxicity model (IRFMN) ¼ Fish (IRFMN); VEGA Fish Acute (LC50) 
Toxicity model (NIC) ¼ Fish (NIC); VEGA Fish Acute (LC50) 
Toxicity model (KNN-Read-Across) ¼ Fish (KNN-Read-Across); 
VEGA Fish Acute (LC50) Toxicity classification (SarPy-IRFMN) ¼
Fish (SarPy-IRFMN); VEGA Fish Acute (LC50) Toxicity model 
(IRFMN-Combase) ¼ Fish (IRFMN-Combase); VEGA Fathead 
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Minnow LC50 96 h (USEPA) ¼ Fathead Minnow (USEPA); VEGA 

Fathead Minnow LC50 model (KNN-IRFMN) ¼ Fathead Minnow 

(KNN-IRFMN); VEGA Guppy LC50 model (KNN-IRFMN) ¼ Guppy 

(KNN-IRFMN); ECOSAR Fish 96-h ¼ LC50 ECOSAR; ECOSAR Fish 

96-h LC50 (SW) ¼ ECOSAR (SW); T.E.S.T. (single model) ¼ T.E.S.T 

(single); T.E.S.T. (consensus) ¼ T.E.S.T. (consensus).

MoA profiler (MechoA)
The mode of action of the substances in the AFSA dataset was 

assessed using the MechoA profiler (Ver. 1.0) available in the 

OECD QSAR Toolbox (Organisation for Economic Co-Operation 
and Development, 2021a) using the SMILES input. The MechoA 

profiler classifies substances into six general MechoAs and 23 

MechoA subgroups (Bauer et al., 2018). To simplify the evaluation 

of the DA against discrete MoA, each output from the individual 

programs was grouped into the broad categories of polar nar

cotics, nonpolar narcotics, reactive (unspecific), reactive (spe

cific), and so on. See online supplementary material for 
assignment of MechoA classifications into the broad categories.

Metrics
Several metrics are used throughout the article to describe the 

performance of the individual (Q)SARs and the DA. In all instan

ces, the experimental result refers to the fish LC50 data (con
verted to GHS) from the AFSA dataset, and the (Q)SAR/DA 

prediction refers to the GHS prediction from the (Q)SAR or 

the DA.
For example, if the DA or (Q)SAR predicts Not Classified and 

the fish GHS classification is Acute 1, then this would be consid

ered a false negative prediction. If the DA or (Q)SAR predicts 

Acute 1 and the fish GHS classification corresponds to Acute 2, 

then this would be considered to be a false positive prediction.
True positive (TP) ¼ Positive experimental result and positive 

(Q)SAR/DA prediction; false positive (FP) ¼ Negative experimental 

result and positive (Q)SAR/DA prediction; true negative (TN) ¼

Negative experimental result and negative (Q)SAR/DA prediction; 
false negative (FN) ¼ Positive experimental result and negative 

(Q)SAR/DA prediction; sensitivity (Se) ¼ TP/[TP þ FN]; specificity 

(Sp) ¼ FP/[FP þ TN]; accuracy (Acc) ¼ [TP ¼ TN]/[TP þ FP þ TN þ

TN]; balanced accuracy (BA) ¼ Se þ Sp/2.

Results
Chemical space analysis
To evaluate the chemical space covered by the AFSA dataset, it 
was compared against the chemical space of diverse datasets 
consisting of industrial chemicals (Organisation for Economic 
Co-Operation and Development, 2021a), drugs (ZINC 15, 2024), 
natural products (Drugs.com, 2024; FooDB, 2024; Sorokina et al., 
2021; Wishart et al., 2018; Zeng et al., 2018), and fragrances 
(International Fragrance Association, 2024). A PCA was per
formed using the two most significant principal components 
(Figure 2). Principle component analysis is a data visualization 
technique that reduces the dimensionality of a dataset to its es
sential features, without losing information. This increases the 
interpretability of a given dataset, because the principal compo
nents are used as variables, which facilitates direct comparison 
of the variability across multiple datasets (Greenacre et al., 2022).

By comparing the AFSA dataset (dataset_AFSA) against the other 
datasets, we can conclude that our dataset represents enough het
erogeneity to cover substances of a diverse nature, as illustrated by 
the overlapping of the chemical spaces in the PCA. For example, 
there is good coverage of the AFSA dataset across industrial chemi
cals (left panel: dataset_TSCA, dataset_REACH) as well as drugs, 
natural products, and fragrances (right panel: dataset_Drugs, 
dataset_NatProd, Dataset_Fragrances, respectively), increasing con
fidence that the dataset used to develop the DA represents a wide 
and diverse chemical space; thus, the DA described can be applied 
to substances across various chemical sectors.

The datasets described above (and the RTgill-W1 dataset) 
were also analyzed by comparing the following physicochemical 
properties: BP, logD, logP, (often referred to as logKow), MP, and 
WS. The resulting violin plots, reported in online supplementary 
material S1, supported the PCA analysis and indicated that the 
dataset used to develop the DA consisted of a diverse set of 
chemicals. In addition, the chemical space was also visualized 
using correct and incorrect DA predictions, and this is reported in 
online supplementary material S2.

Predictivity of (Q)SARs
Each (Q)SAR model was evaluated against the acute fish LC50s in 
the AFSA dataset, after converting each (Q)SAR prediction and 

Figure 2. Chemical space comparison using principal component analysis (PCA). Left panel: The distributions of Principal Component 1 (PC1) and 
Principal Component 1 (PC2) between industrial chemicals (dataset_REACH and dataset_TCSA) and the Animal-Free Safety Assessment (AFSA) dataset 
(dataset_AFSA; dots). Middle panel: The distributions of PC1 and PC2 between U. S. Food and Drug Administration-approved drugs (dataset_Drugs), 
fragrances (dataset_Fragrances) and natural products (dataset_NatProd) and the AFSA dataset (dataset_AFSA; dots). Right panel: Representation of the 
chemical space of the AFSA dataset (dataset_AFSA; light dots) with those chemicals that have RTgill-W1 data highlighted as darker dots.
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acute LC50 to the corresponding GHS classification. Where possi
ble, low reliability (Q)SAR predictions were removed before the 
calculation of performance metrics. The performance metrics of 
each (Q)SAR were evaluated against a maximal subset of the 
dataset (i.e., all substances with a prediction from any individual 
(Q)SAR; n ranging between 113 and 383 depending on number of 
predictions possible from the (Q)SAR under evaluation). After 
evaluation, three models were selected for use in the DA, based 
on those with the highest overall balanced accuracy and by-class 
sensitivity: VEGA Fish (KNN-Read-Across) and VEGA Fathead 
Minnow (KNN-IRFMN) model and the USEPA ECOSAR Fish 96-h 
LC50 model, with BAs of 84.3%, 84.7%, and 77.8%, respectively 
(Figures 3 and 4).

Development and performance of 
score-based DA
When considering how to develop a DA to predict the GHS classi
fication of acute fish toxicity, it was decided to use a score-based 
approach, similar to the Integrated Testing Strategy (ITS) defined 
approach for skin sensitization, published as an OECD guideline 
in 2021 and later updated in 2023 (Organisation for Economic Co- 
Operation and Development, 2023). Filtering the AFSA dataset to 
only include chemicals with a result from the RTgill-W1 assay, 
and a prediction from each (Q)SAR model, the scoring was ap
plied as follows: a score of 4 was given to (Q)SAR predictions and 
RTgill-W1 outputs corresponding to a classification of Acute 1 
under GHS. The L(E)C50 values corresponding to a classification 
of Acute 2 and 3 were assigned scores of 2 and 1, respectively, 
and a (Q)SAR or RTgill-W1 result of Not Classified prompted a 
score of 0. A higher score of 4 for Acute 1 was chosen in order to 
provide a more conservative DA prediction, as desired (less likely 

to lead to false negatives). The mean score from the 3 (Q)SAR pre
dictions and RTgill-W1 output was calculated and rounded fol

lowing standard mathematical rounding rules and used to assign 

a GHS classification as shown in the DA (Figure 5). For example, 

if the mean score was over 3, then it was assigned as Acute 1, if 

the mean score was 2, then it was assigned as Acute 2, the mean 

score equaling 1 led to assignment as Acute 3, and a mean score 

of 0 led to an assignment of Not Classified.
A minimum of two (Q)SAR predictions, from the three permit

ted for use in the DA, and corresponding RTgill-W1 result for a 
substance must be available in order to apply the DA, and low re

liability or out of domain predictions (as described by the individ

ual (Q)SARs, where possible) should not be used. The DA must 

include (Q)SAR predictions and an experimental value from the 

RTgill-W1 assay to ensure diversity in the information sources 

used in the DA. If the DA was composed of similar information 

sources, that is, only (Q)SAR predictions, there is a possibility 
that the DA would be less likely to predict well because similar 

training sets may have been used in their development.
Overall, the DA predicts Acute 1, Acute 2, Acute 3, and Not 

Classified categories for acute fish toxicity with an overall accu

racy of 80%. The performance by-class (Acute 1, Acute 2, Acute 3, 

and Not Classified) ranges from 73.3% for Acute 2 and Acute 3 to 

90.9% for Acute 1, and 87.5% for Not Classified (Table 3). The DA 

can also be used when only two (Q)SAR predictions are available, 

to allow for instances where one (Q)SAR may provide an out of 
domain prediction. The accuracy of the DA when either two or 

three (Q)SAR predictions are used decreases slightly to 78%. The 

performance metrics for this approach are reported in online 

supplementary material S3.

Figure 3. Performance metrics of individual (quantitative) structure-activity relationship ((Q)SAR) models ((Q)SARs) evaluated against the fish median 
lethal concentrations (converted to Globally Harmonized System of Classification and Labelling of Chemicals categories) in the Animal-Free Safety 
Assessment dataset. Note. BA ¼ balanced accuracy, Sens ¼ sensitivity, Spec ¼ specificity.
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Figure 4. By-class sensitivity of individual (quantitative) structure-activity relationship ((Q)SAR) models ((Q)SARs) evaluated against the fish median 
lethal concentrations (converted to Globally Harmonized System of Classification and Labelling of Chemicals categories) in the Animal-Free Safety 
Assessment dataset. Note. BA ¼ balanced accuracy, Sens ¼ sensitivity, Spec ¼ specificity.

Figure 5. Score-based defined approach for acute fish toxicity using the RTgill-W1 assay and three (quantitative) structure-activity relationship ((Q) 
SAR) models, ECOSAR Fish 96-h median lethal concentration, VEGA Fish (KNN-Read-Across), and VEGA Fathead Minnow (KNN-IRFMN).
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Discussion
Impact of using (Q)SARs in addition to RTgill-W1  
assay
The in vitro RTgill-W1 assay has been suggested for use as a re
placement for the in vivo acute fish toxicity test because it accu
rately predicts fish acute toxicity for a diverse range of chemicals 
(Natsch et al., 2018; Organisation for Economic Co-Operation and 
Development, 2021b; Tanneberger et al., 2013). This test is often 
used alongside multiple other information sources such as (Q) 
SAR predictions, physicochemical properties, and other lines of 
evidence. Consequently, the interest in developing DAs and 
IATAs has increased significantly in recent years, primarily for 
human health endpoints (Organisation for Economic Co- 
Operation and Development, 2023, 2024), but approaches for en
vironmental endpoints have also been published (Lee et al., 
2024). An analysis was undertaken to better understand if the (Q) 
SAR predictions were having a positive or negative effect com
pared to using the RTgill-W1 assay alone. For the subset of data 
with RTgill-W1 assay results, the assay alone predicts the correct 
GHS classification with 43% accuracy, whereas the DA predicts 
the same dataset with 80% accuracy (n¼49).

The relatively low accuracy of the RTgill-W1 can be attributed 
to two main issues. The first is misclassification of chemicals 
outside the applicability domain of the RTgill-W1 assay. For ex
ample, allyl alcohol is described in the corresponding OECD test 
guideline as a chemical that is not predicted well by the assay, 
presumably due to insufficient biotransformation to the toxic 
product, acrolein, which itself is well predicted by the RTgill-W1 
assay. In the AFSA dataset, allyl alcohol is classified as Acute 1 
using acute fish toxicity LC50 data, whereas the RTgill-W1 result 
corresponds to Not Classified. This example highlights the bene
fit of a DA, where other information sources can reduce the im
pact of an incorrect result/prediction. As two of the three (Q)SAR 
models predict allyl alcohol to be Acute 1 (ECOSAR predicting it 
to be Acute 3), the overall DA prediction is correct, and predicts it 
to be an Acute 1 fish toxicant. Another example is malathion, 
where the RTgill-W1 result corresponds to Acute 3, and the acute 
fish toxicity LC50 data indicates Acute 1. One known limitation 
of the RTgill-W1 assay is prediction of neurotoxins such as mala
thion, which inhibits acetylcholinesterase. Additionally, the oxi
dative metabolite malaoxon is more toxic than malathion, and is 
also a neurotoxin (Reed & Rubin, 2014). This substance has been 
discussed (Tanneberger et al., 2013), and analysis of the fish LC50 
data (Fischer et al., 2019) highlighted a species sensitivity 

difference for this chemical, whereby the RTgill-W1 assay pre
dicts malathion more in line with the less sensitive fish species 
(Pimephales promelas). The LC50s for malathion in the AFSA data
set range between 0.003 mg/L and 25 mg/L, across all species; 
therefore, applying the ranked geometric mean (for comparison 
of DA predictions) provides an LC50 value of 0.27 mg/L. If the 
LC50s of a single species of fish were considered, then the ranked 
geometric mean ranges from 0.077 mg/L for Oncorhynchus mykiss 
to 13.6 mg/L for Pimephales promelas, similar to the analysis 
reported by Fischer et al.

The second issue is the inherent difficulty of a classification 
system to distinguish between moderate or mild toxicity effects 
compared with strong and no effect, i.e., Acute 2/Acute 3 versus 
Acute/Not Classified in this case. This is reflected in this dataset, 
because the RTgill-W1 assays predicts 7/8 Not Classified chemi
cals, 2/15 Acute 3 chemicals, 6/15 Acute 2 chemicals, and 6/11 
Acute 1 chemicals correctly. These results should be considered 
with caution, because this dataset is small and broad generaliza
tions based on this analysis would be inappropriate.

For this dataset, in cases where the RTgill-W1 assay misclassi
fies, it tends to do this by only one GHS class, with the exception 
of allyl alcohol and malathion, described above.

Performance of DA when evaluated against MoA
Each substance was assigned a MoA using the MechoA scheme 
and then designated into broader categories of nonpolar nar
cotics, polar narcotics, reactive (specific), and reactive (unspe
cific). This categorization helped analyze the predictive 
performance of the DA, because several MechoA classifications 
occurred only once or twice and therefore could not be reliably 
assessed. The MoA were also assigned using the Verhaar classifi
cation scheme, but this resulted in an increased number of un
classified substances, which has been reported elsewhere 
(Firman et al., 2022). Therefore, the MechoA scheme was used for 
further evaluation. This comparison is reported in online supple
mentary material S5.

The predictions from the DA were evaluated per MoA, and 
very little difference was observed between the accuracy, sensi
tivity, specificity, and balanced accuracy (Figure 6). This analysis 
was undertaken on the subset of 49 substances with DA predic
tions derived from RTgill-W1 results and predictions from all 
three (Q)SARs, which led to relatively small numbers of substan
ces to assess the impact of MoA. Therefore, it is difficult to make 
conclusive interpretations. However, it is interesting to note that 

Table 3. Performance metrics of acute fish toxicity defined approach (DA).

Predicted Globally Harmonized System (GHS) classification based on score-based DA

Acute 1 Acute 2 Acute 3 Not Classified

GHS classification 
based on experimen
tal fish LC50

Acute 1 10 0 1 0
Acute 2 2 11 2 0
Acute 3 0 2 11 2
NC 0 0 1 7
Acc¼ 80%, n¼ 49

Statistics of correct predictions and over/under predictions per GHS classification

Classification Acute 1 Acute 2 Acute 3 NC

Correct % 90.9 73.3 73.3 87.5
Underpredicted % (false negative) 9.1 (Acute 3) 13.3 (Acute 3) 13.3 (NC) –
Overpredicted % (false positive) – 13.3 (Acute 1) 13.3 (Acute 2) 12.5 (Acute 3)
n 11 15 15 8

Note. LC50 ¼median lethal concentration; NC ¼ not classified.
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specific acting chemicals are predicted by the DA with over 90% 

accuracy because these are often difficult to predict with (Q) 

SARs. As additional RTgill-W1 data is generated, the DA can be 

further assessed against MoA and a more accurate representa

tion will be possible.

Use of the geometric mean of the LC50 data for 
substances with multiple fish studies
When compiling and curating a large dataset, there are several 

mathematical ways to derive a “final” value when there are mul

tiple studies with differing results. The median value may allow 

significant outliers (at either end) to have less influence. The 

mean provides a simple average value across all studies, whereas 

the geometric mean is often considered to be more accurate 

when there are diversity/outliers in a given dataset. In addition, 

when using biological data, it is common to use the most sensi

tive value (the lowest value), to be conservative in an evaluation 

of the substance. The GHS guidance states that typically the 

most sensitive value is used, and it is advised not to combine 

data that crosses different species in a taxonomic group, but that 

has to be considered on a case-by-case basis. Because there tends 

to be some flexibility in the guidance, and considering that for 

this project the resources were not available to check every single 

study to assess the reliability of the outlier values, it was there

fore agreed to use the geometric mean. The geometric mean pro

vides a better representation of all available data for a specific 

substance without undue influence from a minimum (conserva

tive) value that could be an outlier. However, it is clear that spe

cies sensitivity for specific chemical classes needs to be a 

consideration for acute fish toxicity, as described for malathion 

previously. Despite this, in a real-world scenario, if an acute fish 

toxicity test was to be conducted on a new substance, it would be 

likely to only be tested once, and in a single species; thus, multi
ple values from discrete studies would not exist for comparison.

Choice of (Q)SARs and number of (Q)SARs used in 
the DA
The 12 (Q)SARs considered for use in the DA were those available 
from ECOSAR, VEGA, and T.E.S.T. These were chosen because 
they represented well-established, well-used, and easily avail
able in silico models for the acute fish toxicity endpoint.

The evaluation of the 12 (Q)SARs, after removal of out of do
main (Q)SAR predictions, illustrated that many had similar pre
dictivity, which made choosing specific (Q)SARs to take forward 
for use in the DA challenging (Figure 3). A threshold of 75% for 
balanced accuracy was used initially, which left six potential (Q) 
SARs for use in the DA: USEPA ECOSAR, VEGA Fathead Minnow 
(USEPA), VEGA Fathead Minnow (KNN-IRFMN), VEGA Fish (KNN- 
Read-Across), VEGA Fish (NIC), VEGA Guppy (KNN-IRFMN), and 
T.E.S.T. (consensus).

Next, the performance metrics of the individual (Q)SARs per 
GHS class were evaluated. This illustrated that several of the six 
(Q)SARs with an overall high BA showed an unbalanced predic
tivity of each individual GHS class (e.g., Guppy [KNN-IRFMN] pre
dicts Acute 1 much less well than it predicts Acute 2, Acute 3, or 
Not Classified substances—33% sensitivity versus >65%;  
Figure 4). Consequently, a by-class sensitivity threshold of 60% 
was applied to the 12 (Q)SARs under evaluation, and the three 
remaining (Q)SARs were ECOSAR, VEGA Fathead Minnow (KNN- 
IRFMN), and VEGA Fish (KNN-Read-Across), each with an overall 
balanced accuracy more than 75% and a by-class sensitivity 
more than 60%. These three (Q)SARs were selected for use in the 
DA for acute fish toxicity.

In total, there were four information sources used: predictions 
from USEPA ECOSAR, VEGA Fathead Minnow (KNN-IRFMN), and 

Figure 6. The performance of the defined approach when evaluated against different broad categories of Mode of Action (MoA). Total n¼ 48 because 
one chemical could not be assigned by MechoA.
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VEGA Fish (KNN-Read-Across; Q)SARs and the output from the 
RTgill-W1 assay. When all of these results are applicable, the ac
curacy of the DA is 80%. However, when using either two or three 
(Q)SARs, in combination with the RTgill-W1 assay, the accuracy 
of the DA is similar at 78%. Consequently, to use the DA, reliable 
and in domain predictions must be available for at least two of 
the three recommended (Q)SARS, and a result from the RTgill- 
W1 assay must always be used. If fewer (Q)SAR predictions are 
available, or it is not possible to conduct the RTgill-W1 assay, 
then the scoring method used in the DA may still be used, but 
only as part of a wider weight of evidence approach.

The DA proposed through execution of this project is an ex
ample of a proof-of-concept that the VEGA Fathead Minnow 
(KNN-IRFMN), VEGA Fish (KNN-Read-Across), and USEPA 
ECOSAR (Q)SARs and RTgill-W1 data can be used in combination 
to predict GHS categories of acute fish toxicity. It is possible that 
similar accuracy could be obtained using different selections of 
(Q)SARs, especially if using another dataset to evaluate the per
formance of the set of 12 (Q)SARs.

Scoring used in the DA
When considering how to develop a DA for acute fish toxicity 
that could predict acute environmental GHS classification cate
gories, the DA for skin sensitization known as the ITS was used 
as inspiration, because this DA also provides a categorical output 
suitable for use in EU CLP and/or GHS classification context 
(Organisation for Economic Co-Operation and Development, 
2023; Takenouchi et al., 2015). This DA uses a score-based 
method to derive its predictions, so a similar method was under
taken for the DA for acute fish toxicity. Given that the goal of the 
project was to accurately predict GHS categories, converting each 
(Q)SAR prediction and RTgill-W1 outcome to their corresponding 
GHS classifications and assigning scores to each was used as a 
starting point. After several analyses testing out varying scoring 
methods, a simple approach of assigning scores to each informa
tion source, based on potency, calculating the mean score of the 
information sources, then converting back to a corresponding 
GHS category, provided accurate predictions. The score assigned 
to Acute 1 (score¼ 4) was designed to result in more conservative 
DA predictions by more heavily weighting an Acute 1 classifica
tion than Acute 2, Acute 3, or Not Classified classifications.

By-class performance of the DA
The DA demonstrates high accuracy in detecting both the most 
toxic and least toxic substances as illustrated by its accuracy for 
Acute 1 toxicants and Not Classified chemicals (90.9% and 87.5%, 
respectively). The DA is slightly less predictive for Acute 2 and 
Acute 3 substances (73.3%, for both) (Table 3). This reduced accu
racy for moderately toxic substances is expected, because pre
dicting moderate toxicity is generally more challenging.

Selected FP and FN case studies
Several false positive (substances predicted to be more toxic by 
the DA than indicated by the GHS category corresponding to the 
experimental fish data in the AFSA dataset) and FN (substances 
predicted to be Not Classified or less toxic by the DA than indi
cated by the GHS category corresponding to the experimental 
fish data in the AFSA dataset) were investigated further. For the 
presented case studies, it could be proposed that misclassifica
tions by the DA can be attributed to potential in vivo outliers 
(dichloromethane) or borderline in vivo or (Q)SAR predictions/in 
vitro results (3-isobutyl-1-methylcyclohexan-1-ol (rossitol), 
cyclohexyl salicylate, di-n-butylorthophthalate). These are de
scribed in more detail in online supplementary material S4.

Case study 1
Chemical name: 3-isobutyl-1-methylcyclohexan-1- 
ol (rossitol) 
DA prediction: Acute 3 
Fish GHS category: Acute 2 
FN/FP?: FN 
Comment: Fish LC50 and two of the four DA information 
sources (Fathead Minnow [KNN-IRFMN] and Fish [KNN- 
Read-Across]) are clustered around the cutoff between 
Acute 2 and Acute (10 mg/L). These potentially borderline 
results increase uncertainty.   

Case study 2
Chemical name: dichloromethane 
DA prediction: Not Classified 
Fish GHS category: Acute 3 
FN/FP?: FN 
Comment: Nine fish LC50s were reported, ranging from 2.6 
to 502 mg/L. Seven of the nine LC50s are reported as 
>100 mg/L (Not Classified), but the presence of two LC50s 
at 2.6 and 2.9 mg/L resulted in the geometric mean being 
calculated as 91.5 mg/L, leading to an in vivo classification 
of Acute 3.   

Case study 3
Chemical name: cyclohexyl salicylate 
DA prediction: Acute 1 
Fish GHS category: Acute 2 
FN/FP?: FP 
Comment: The heavier weighting of (Q)SAR predictions 
corresponding to Acute 1, combined with the rounding up 
of the mean DA score (mean¼2.5, rounded up to 3¼Acute 
2 DA prediction), led to the misclassification of this 
substance. In addition, the fish LC50 was reported as 
1.5 mg/L, close to the borderline between Acute 1 and 
Acute 2.   

Case study 4
Chemical name: di-n-butylorthophthalate 
DA prediction: Acute 1 
Fish GHS category: Acute 2 
FN/FP?: FP 
Comment: Twenty fish LC50s were reported, ranging from 
0.48 to 6.5 mg/L. Fifteen of the 20 LC50s are reported as 
>1 mg/L (Acute 2) and five as Acute 1. Three of the four 
information sources used in the DA assigned the 
substance as an Acute 1 toxin. These results all cluster 
relatively close to the border between Acute 1 and Acute 2.   

Limitations of the acute fish toxicity DA
It is important to understand that this DA for acute fish toxicity 
is a proof-of-concept example of how non-animal information 
sources can be combined to provide reliable predictions of the 
GHS category of acute fish toxicity. The reason to highlight it as a 
proof-of-concept is because this DA has several limitations. The 
first is related to the quality of experimental data: The experi
mental fish LC50 data has been curated as described in the 
Materials and Methods section. It is likely that due to human error, 
there will be minor mistakes in the published source data, issues 
with study reliability, and other problems that have not been 
addressed by the curation and standardization undertaken in 
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this project, leading to variability in the experimental data used 

to benchmark the DA. This cannot be addressed without under

taking an in-depth, manual, labor-intensive substance by sub

stance curation of the AFSA dataset. Species sensitivity is 

another limitation; as described previously for malathion, there 

are certain chemical classes and/or mechanisms of action that 

have varying sensitivities to different species of fish, which can 

impact the performance of the DA. Future iterations of the DA 

could provide species-specific or chemical class-specific mod

ules. In addition, the DA has not been validated against a test set 

of unseen data; thus, it may only be applicable to substances 

that fall within the chemical space and MoA profiles observed in 

the AFSA dataset and described in this article. In addition, the DA 

is limited by the applicability domain of the (Q)SARs; newer 

chemistries may be less well represented in the training set of 

models and may be more likely to provide a lower reliability pre

diction, not suitable for use in the DA. Finally, a significant limi

tation of the DA is related to the accepted inputs into the (Q)SAR 

model. Many models cannot predict for mixtures, nor for metals 

or organometallics. Consequently, the DA described is only cur

rently applicable for single organic chemicals. Mixtures could po

tentially be assessed using the DA (Q)SARs by inputting the 

individual components of a mixture and taking the most conser

vative prediction; however, this does not account for any syner

gistic effects. In addition, it may be possible to adapt the DA to 

use (Q)SARs that are able to provide reliable predictions for mix

tures and/or unknown or variable composition, complex reaction 

products or of biological materials (UVCBs) or apply other calcu

lations to account for intermolecular interactions (Bicherel & 

Thomas, 2021), because the RTgill-W1 assay is already applicable 

to mixtures and unknown or variable composition, complex reac

tion products or of biological materials (UVCBs).

Conclusions and further work
In conclusion, a proof-of-concept defined approach (DA) for 

acute fish toxicity has been developed that integrates data from 

four information sources: three freely available (Q)SARs, VEGA 

Fish (KNN-Read-Across), VEGA Fathead Minnow (KNN-IRFMN), 

and ECOSAR, and the in vitro RTgill-W1 assay. It provides GHS 

classifications for Acute 1, Acute 2, Acute 3, or Not Classified, 

making it suitable for use within EU CLP and/or GHS regula

tory frameworks.
With respect to performance, this DA demonstrates an overall ac

curacy of 80% in predicting acute fish toxicity classifications as de

fined by GHS. The DA can also be used when only two (Q)SAR 

predictions are available. The DA is applicable to a wide range of 

chemical substances with diverse MoAs, as shown by analyses of 

chemical space coverage and MoA impact. However, there are sev

eral limitations associated with the DA that should be taken into ac

count before use. For example, it is only suitable for single organic 

chemicals, and it has not been evaluated against an external test set.
A KNIME workflow and an example Excel file is available from 

the corresponding author. This workflow applies the scoring to 

each information source and provides the predicted GHS 

classification.
Further work to evaluate the DA against an unseen test set of 

data could be undertaken and could lead to amendment of the 

score-based approach to improve its applicability and scope 

of use.

Supplementary material
Supplementary material is available online at Environmental 
Toxicology and Chemistry.

Data availability
The Animal-Free Safety Assessment dataset can be accessed in 
the online supplementary material.
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